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I. Phys.: Condens. Matter 6 (1994) 7725-7739. Printed in the UK 

The effective Hamiltonian for stress-type perturbations in 
T 8 ~ 2  Jahn-Teller systems 

M C M O'Brien and D G Shelton 
Deparfment of Physics, Oxford University, 1 Keble Road, Oxford OX1 3". UK 

Received 20 May 1994, in final form 7 July 1994 

Abshact. We set out the effective Hamiltonian assodated with the application of perhubations 
such as stress to ions in surroundings of cubic or temhedral symmetry that are subject to a T @ B  
Jahn-Teller interadion. The first- and secondmder Ham factors that appear as parameten in 
this effective Hamiltonian are calculated by a numerid method, and checked by approximate 
analytical methods in the limits of strong and weak coupling. The results are compared with those 
produced by an approximate analylical methd by Jamila and co-wolxen. Some discrepancies 
are found. 

1. Introduction 

The use of an effective Hamiltonian to summarize the effect of a variety of peaurbations 
when measurements can only be made within a set of states has a long history as a meeting 
place for theory and experiment. The most general form of the effective Hamiltonian can 
usually be expressed in terms of a limited number of symmetry-related parameters; the 
determination of this set of parameters represents all the information that can be obtained 
experimentally about the system, and their calculation can be taken as the target of a 
theoretical investigation. 

The reduction or 'Ham' factors considered here are such a set of effective Hamiltonian 
parameters, and they express the way a perturbation that acts on a set of electronic states that 
are subject to a Jahn-Teller interaction appears in the vibronic ground states. The first-order 
Ham factors are the same as the reduced mabix elements associated with an application of 
the Wigner-nCart theorem within the ground states, and can be defined in an unambiguous 
manner in terms of a simple ratio of matrix elements. The second-order Ham factors are 
designed to cope with the effects that come in by taking the perturbation to second order. 
All these Ham factors can be most economically defined if the effective Hamiltonian is set 
out as a set of symmetrized products of operators, and the way that this works out will be 
shown in the following sections. There is a general problem with the second-order Ham 
factors in choosing the normalization, and we shall define the choice made here by reference 
to the set of mahices (1) in terms of which the effective Hamiltonians will be written out. 

The particular Ham factors calculated here are those which would be associated with 
any real perturbation such as a stress field acting on the T-type triplet electronic ground 
states of an ion that is originally at a position of cubic or tetrahedral symmetry in a crystal, 
and that is subject to a Jahn-Teller interaction with a set of tz-type vibrations. These effects 
are analysed in terms of a set of operators acting within the vibronic T-type triplet with 
symmetries matching the AI, E and TZ representations of the cubic or tetrahedral group. A 
general theory of how these operators should be defined self-consistently in terms of their 
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grouptheoretical properties has been set out by Poliiger and co-workers [l], and this theory 
has been used by Jamila and co-workers [Z] in an analytic method to get approximate values 
of these second-order Ham factors. In this work we use a numerical method that should, 
if used carefully, give results that are as exact as necessary. In contrast to [I] we define 
all our operators in terms of a single set of matrices given in the next section. We hope 
that this wiIl make the results given here usabIe without reference back to other papers for 
definitions. As we go along we shall point out where we agree and disagree with 121. 

The numerical method used in the work reported here is the same as that used in a 
previous work of this kind [31: we diagonalize a Jahn-TeUer Hamiltonian that includes 
varying small amounts of a carefully selected perturbation and fit the lowest energies to 
a polynomial in the perturbation strength. Although this sounds clumsy, it is a fast and 
efficient process because only the few lowest roots of the very large matrices are required, 
and these roots naturally appear first in the iterative process. 

We should make a remark about the notation used here and elsewhere. The whole of 
what follows applies equally to TI and Tz electronic states, but the vibrational modes and 
stress operators have to belong to TZ representations of the cubic or tetrahedral group. This 
is why we label the electronic states T and not Ti. The lowest vibronic state is of the same 
symmetry as the electronic state, and the lowest excited state is A1 or Az according as the 
electronic state is TZ or TI. 

M C M O'Brien and D G Shelton 

2. The effective Hamiltmian in T @ q  

Within a set of three real basis states, the maixix elements of any real operator can be written 
as a l i ea r  combination of the following six matrices: 

0 0 0  0 1 0  
re= (o 0 0 o) 1 .=(H i) .=(; 0" 0") 
Q=(! 0 0  4 0) .=( -& +$ 0 ;) .=(o 1 0 0  1 0) 

(1) 

0 0 -1 0 0 1  

and consequently any effective Hamiltonian for any number of real operators can be written 
as a linear combination of these six matrices. These matrices have been chosen in a standard 
way to represent the effect of operators of Tz, E and A1 symmetry, and this choice also 
makes clear why no effective operators of other symmetry need be inchded in the effective 
Hamiltonian for a real perturbation. 

The Hamiltonian of a system undergoing a T @ q  Jahn-Teller interaction can be written 
in terms of these mamces as Hcb + Hm: 

'HIT = -k(Xte + Yz;, + Zrc) (2) 

where X, Y and Z are the coordinates of a three-dimensional harmonic oscillator, and the 
bases are three electronic states of TI or TZ symmetry; Udb is just the Hamiltonian of a 
threedimensional harmonic oscillator, chosen with units such that iio = I and the potential 
energy term is $(xZ + Y' + 2'). 

The perturbation produced as the effect of stress will itself be a linear combination of 
these six operators, operating in the electronic basis, so in order to get a self-consistent form 
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for the second-order terms in the effective Hamiltonian we need the following information 
ahout the products of these matrices: 

€0 = e r 4  - CeCe €6 2 ~ 8 4  LY = + Cece 
9 = 8(-€e +Jrt,) rn = t,,(-ce --&ee) T{ = 2rC~e (3) 

2(  $ +r,z+z;,. C e = r  { -1 2(r;+r,z) c6=g(r; -r , z ,  LY=.?rZ 
q = z , , z ~ + q r v  r,,=qr(+rgrr q=yr,,+r,,,y 

2 

These equations reflect the fact that the matrices are classified according to irreducible 
representations of the cubic group, and that the product representations are 

where the square brackets indicate antisymmetric products that disappear when the operators 
classified by the two copies of the representation are identical. 

3. Effect of E-type perturbatiom 

To do the easiest part 6rst we start by looking at E-type operators on their own. Using the 
matrices (l), the parameters in the effective Hamiltonian, or Ham factors, are defined in 
such a way that if the perturbation in the elec&onic states is 

U< = Voce + V6+ (5) 

then the effect of this perturbation in the threefold-degenerate ground state of the Jahn- 
Teller system can be expressed as an effective Hamiltonian written as a 3 x 3 matrix as 
follows: 

Xes = K@)[&68 + K€cI + Kf)(E, E)[(V: - V:)€S +2VcV,€<I + KE)@. E)(V: + &')W. 
(6) 

This expression is constructed as a sum of products of symmetrized linear and quadratic 
forms in V with matching makices, as can be seen by comparison with (3). It also reflects 
the fact shown in (3) that if the only non-zero perturbation is C-type, then the only second- 
order terms are the c and U, and the second-order Ham factors are defined accordingly. 

3.1. Numerical calculation 

The form of the Hamiltonian (6) shows that all these Ham factors can be. calculated by 
using & alone as a perturbation. We accordingly set up the Hamiltonian 

%ib +ZIT + VBCB (7) 

in the basis of the uncoupled electron and vibrational states, and find the energies of the 
ground states numerically for a range of small values of Ve. It can be seen that with this 
choice the effective Hamiltonian (6) is 

(8) Kea = K @ ) I b ~ e l +  K,o'@, E)[(-V&oI + K z ) ( E ,  E)(V,"b 
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with the two eigenvalues 
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The energies of the two lowest eigenvalues of (7) are fitted to a polynomial in V, and the 
coefficients of first- and second-order tenns picked out. The values of the second-order Ham 
factors, found by matching these coefficients to those in (9), are shown plotted as functions 
of k in figure 1. If we compare these with figure 1 of [2] the most obvious difference is 
that our calculated @’@,E) goes through zero. The general shape of Kf,’(E, E) matches 
quite well; we shall compare the magnitudes in section 6. 

- 0 . 0 5  O - O : p  -0.1 ;:;El C--K(E) 

-0.15 

( E X  0.2 -0.2 <-- K 

- 0 . 2 5  (a) 
~5 3 .,..,.,.,..,. 0 

0.5 1 1.5 0.5 1 1.5 2 2 . 5  3 ’  ” 
k --> k --z 

Figure 1. (4 Plots of the secondader Ham factors @!@.E) and @@.E) against the 
Jaho-Teller coupling strength k. (b) A plat of the fintdrder Ham factor K@) against k. 

These numerical results can also be compared with predictions for large and small k 
that can be made analytically, as shown in the following sections. 

3.2. Weak coupling 

When k < 1 the second-order terms can be found using second-order perturbation theory. 
For this calculation the Hamiltonian ‘Hrr only need he applied to first order in k to the 
uncoupled product states to get all the terms up to #V: in the perturbation. If we use the 
notation li; 111, nz. n3) to represent a product of the electronic state li) (i = 1,2,3) with a 
vibrational state with nl type1 phonons, nz type-2 phonons and n3 type-3 phonons, then 
the three ground states, taken to first order in k ,  can be written 

11’) = 11; O,O, 0) - 5kI2; O,O, 1) - 5kI3;  0.1,O) 

0, 0, 1) 

13; O,O, 0)  - hkll; 0, 1,O) - hk12; 1.0.0) 
12’) = 12; 0.0.0) - -!-k13; 4 l , O ,  0) - L k l l ;  4 (10) 

13’) 

remembering that the phonon energy is just one with the scaliig being used here. 
The matrix of the perturbation V& acting within these ground states is 

(1 - ik2)V,60 (11) 
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giving the well known result 

K@) = 1 - i k 2 .  (12) 

For the second-order Ham factors we need to note that the perturbation V,g couples the 
ground states to excited states as follows: 

11‘) -+ [3;0, 1,0) + $jkll; O,O,O) +... 
12’) + 13; l , O ,  0) + $jk[2; O,O, 0) +... (i3) 

The result of applying the perturbation to second order is a matrix of second-order 
perturbations that can be written 

- (2)V:k’. + ($)V:k*€o (14) 

to order k2. These results do indeed fit with our numerical calculations. 

3.3. Strong coupling 

For strong coupling we use the adiabatic approximation, and t h i i  of the system as 
moving on an adiabatic potential energy surface (APES). In this system there are three 
APES corresponding to the three roots of the Hamiltonian $(X’ + Y’ + 2’) + Xm. The 
lowest root of this Hamiltonian gives the energy of the lowest APES as a function of X, Y 
and Z. The lowest APES has four minima of equal energy along four of the eight (111) 
directions in (X, Y, Z )  space with saddle points between them along (100) drections. The 
states of lowest energy have to be those in which the wavefundion is concentrated at the 
four minima, giving rise to a set of four ground states: a T triplet with an A singlet lying 
a little higher. The reduction factors we are concerned with are within the triplet. All this 
is well established. 

As the reference point moves over an APES the electronic state changes, and the four 
electronic bases at the four minima are just 

(The similarity between these sets of bases and the sets of (X, Y, Z )  at the same minima is an 
example of the symmetry principles discussed by Ceulemans [4]J Clearly, the expectation 
value of the operator €8 in these electronic states is  zero at each of these minima, leading 
to an asymptotic value K Q  + 0 at strong coupling. 

For the second-order Ham factors we must look at coupling with various excited states, 
and we need a more general form of the electronic base. We assume that at a general point 
of the lowest adiabatic surface it can be written in terms of the three original electronic 
basis states (the bases for (2)) as 

(sinecos9.sinesin9,cose) (17) 
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and if we assume that this point is in the neighbourhood of a minimum on that surface there 
will be two electronic states orthogonal to this one on two coincident APES at an energy 
2k2 higher up. If a perturbation V& is applied then the cross terms between the APES 
produce a second-order perturbation in the ground state of -$V~cosze sinze/Z2, where 
the assumption is made that the matrix elements for the second-order perturbation must 
apply to ‘vertical‘ transitions in the vibrational phase space. 

Now at strong coupling all the minima in the lowest potential energy surface occur 
at cos2B = 113 as we saw above, and as the three basis states only differ by differences 
of sign at these points, they will all have the same second-order correction to the energy. 
Consequently, we only get a non-zero contribution to KE)(E. E) out of this, Kf)@, E) 
is zero as far as this part of the calculation is concerned. Substituting into (6) gives a 
contribution to KE)(E, E) of -1/4kz. 

Next we must look at contributions to the perturbation from within the lowest adiabatic 
potential energy sheet. To get these we need to know the form of 3 1 ~  near the minima. A 
suitable basis transformation to the minimum at (1 , l . l )  in (X, Y, Z) space gives 

M C M O‘Brien and D G Shelton 

-1Z’ 1x1 
. J 3  

(18) 1x1 J3 L Z ’ + L X ’  4 -Zy ’  :3y‘ ) ( z Y f  J3 

4 5  , 
-Lyr  zz’-@’ 

% = k  9 

where (X’, Y’, Z’) are rotated from (X, Y, Z )  with Z’ along the (111) direction. With this 
same choice of basis we get 

5 .=(% ;+ H). (19) 

2 

Now in strong coupling we have Z‘ = Z/43, which is large, so allowing for admixtures 
to the ground state proportional to X’/Z’ and Y’/Z‘ we find that the expectation value of 
€0 in the lowest APES around the (1 11) well is 

which is then put into the vibronic states to give the second-order Ham factor. The operator 
X‘ connects the lowest state in the (111) well with the first excited state in that same 
we& and in finding the matrix element we must remember that the restoring force in the 
(X’, Y’) plane is 213 of that in the Z’ direction. Bearing this in mind we get a second-order 
perturbation of the ground state of -V:/8k2, which leads to a contribution to K:)(E, E) 
of -l/Sk2, and as this is the same in all the wells in the lowest potential energy surface, 
the contribution to @@,E) is again zero. Adding the contributions from inter- and 
intra-energy surface terms we finally find 

to order l/k2. We tested this by extending the numerical calculation to values of k between 
3 and 4, and found by extrapolation 

(22) 
1 

Kx) (E ,  E) -+ (-0.375 f 0.005)- 
kZ 
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which is consistent with the analytical result. 
There now arises the question of what we can say about Kf))(E, E) and K Q  at strong 

coupling. Ki2))cE,E) has no term of order l / k 2  and the numerical results support this 
conclusion, but the numerical results also indicate a change of sign between weak and 
strong coupling that is worth investigating. This reduction factor is going to depend on 
the differences between the expectation value of €0 in the three components of the ground 
triplet, which will have to be found by looking at the saddle points between the minima 
in the lowest APES. These saddle points occur along (loo), (010) and (001) in (X, Y, 2) 
space, and transforming to the electronic bases for the three APES we get 

along (OOl), and 

along (100) and (OlO), where the first basis corresponds to the lowest APES in each case, 
and the other two are in order of ascending energy. 

The best guess for the amplitude of the wavefunctions on these saddle points is 
the same guess as one uses to find the tunneling splitting: that this amplitude goes as 
exp(-ck2) for some positive number c. More important than the actual amplitude is 
the fact that the different components of the ground triplet have this amplitude non-zero 
on different saddle points, which is all that differentiates these different components in 
strong coupling. Specifically, the 6rst (T,) basis is non-zero on (010) and (001). the 
second fly) basis is non-zero on (101) and (OOI), while the third (T,) basis is non- 
zero on (100) and (010). Consequently, within the triplet ground state (Tx. Ty, Tz), 

positive at strong coupling, as has been found to be the case. 
To get the contribution to the second-order perturbation we have to pick out those 

contributions that derive predominantly from different parts of the vibronic wavefunction 
at strong coupling. To do this we make the usual assumption, based on considerations of 
--type solutions of the Schrijdinger equation, that the main overlap from the ground 
state is to states at the energy reached by a ‘vertical transition’ from this particular part 
of the vibronic ground state. This gives the energy denominator for any particular second- 
order term as the energy of the appropriate APES at that place. We also remark that, once 
clear of the ground state, the density of vibronic states becomes large. This is because the 
vibrational space has three dimensions instead of the usual single dimension. Because of 
this it is reasonable to suppose that linear combinations of states can be consbmted that 
are localized in vibrational space and reached by a ‘vertical transition’ so that a sum rule 
can be used locally, and conhibutions from different parts of that space to a second-order 
perturbation can be evaluated separately and added to each other. 

Next we describe the energy levels at the saddle points. The three APES are equally 
spaced at an energy k2 apart, and the lowest APES is at the saddle point energy of ik2 above 
the minima. We now refer to (23) and (24) for the coupling terms, which derive from ( E ; ) .  
The intra-sheet conplig term comes from squaring diagonal elements, i.e. it is (k, &, 3) 

o( (L - 1. 4 ,  1. - 1. 4, -1. - L )  - - (1 4,;i,-+), 1 which shows that K@) is very small and 
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on the saddle points, or (&. &, 3)  in the triplet ground state. This will come in with an 
energy denominator ikZ when it is put into a second-order perturbation. The inter-sheet 
coupling comes from the only off-diagonal element in (2.4) and is (O,$, &) or ($,%, E) 
in the triplet ground state. The energy denominator for this second-order perturbation will 
be (2 + 1/6)kz. 

It seems not to be possible to get any more numbers into this, but what is clear from , 

the preceding paragraph is that the intra- and inter-sheet contributions to K$)(E, E) are 
of opposite signs; in fact K,n’(E, E) is positive if the intra-sheet coupling dominates, and 
negative if the inter-sheet coupling wins. Thus agreement with the numerical results at 
strong coupling is seen to be possible as long as the intra-sheet coupling is included. 

The difference in the strong-coupling behaviour of these second-order Ham factors can 
be seen qualitatively in figure 1. It can also be seen in figure 1 of [Z] (equation (4.3) of 
this reference is in error in showing Kz) (E ,  E) as varying asymptotically as I l k Z  [SI). 

M C M O’Brien and D G Shelton 

4. Effect of T2-type perturbations 

A general Tz-type perturbation in the electronic triplet states can be written 

3t, = &re + V,r, + V3t3 

and with this perturbation the effective Hamiltonian in the ground states is 

Ha = K O ( & q  + V,,r, + V3r3) 

+ Kf)(T, T)I[V: - $0‘: + V:)l<o + $(V; - V,”)G) 

+ KE)(T, T)[$(V: + V,” + V,”)al 

+ KE’CT, T)(ZVqV3r6 + 2V3Vcr, + 2&V,rc). (26) 

As before, setting out 3t like this serves to define the normalization of the second-order 
factors as well as explicitly showing their symmeby-related properties. 

4.1. Numerical results with and without the A state 

Clearly, a simple choice of perturbation is obtained by taking only one of the V to be 
non-zero, so we set up the Hamiltonian 

% v i b + x n + v 3 C c  (27) 

3teR = ~ 0 ( ~ 3 r 3 )  + KENK.T)[(ZV,~)QI + K~)(T,TX$(V,”)~I.  (2s) 

so that the effective Hamiltonian (26) becomes 
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The ground triplet thus splits into three, and by fitting the three calculated energies of the 
three lowest eigenstates to polynomials in Vrrr we are able to pick out K O  and the two 
second-order Ham factors, which are plotted as functions of k in figure 2. These second- 
order Ham factors are obviously quite unlike @)(E, E) and Kf,)(E, E) in their behaviour, 
being larger and becoming very large at large k, and the reason for this is that in the T @ 
Jahn-Teller system there is a singlet (A) state close above the ground triplet, which becomes 
closer as k increases. The TZ operator connects the singlet and hiplet states, while the E 
operator does not, and it is the effect of this interaction that dominates the second-order 
perturbation energy. It is not possible to sort out this contribution by studies of the perturbed 
energies alone, so instead we calculated the cross matrix element directly by finding the 
appropriate eigenstates explicitly, and the result is shown in figure 3. This matrix element, 
(AlrllTz), starts from zero and approaches U3 asymptotically ask becomes large. We also 
plot the quantity (AlrrlT,)’/A, which gives the magnitude of this contribution. Here A is 
the splitting between the A and T levels, also found numerically. 

/ 

1 1.5 2 2.5 3 

-1.5 

-2 
0 .5  

k --> 

Figure 2. PIOG of the second-order Ham factors K t ) ( T ,  T), KX’(T, T) and K f ) i T .  ‘0 together 
with the first-order Ham factor K(T2) against the Jahn-Teller conplig strengul k. 

Next, we used the calculated value of this matrix element to remove the effect of the 
close level, and found what the KP)(T, T) would look like without this effect; the results 
are shown in figure 4. These results look much more like the K,R‘(E, E), but the plot stops 
at a smaller value of k because of the numerical difficulty of extracting a small difference 
between two large numbers reliably. In practical terms it does not matter in the least that we 
cannot extract this latter category of second-order Ham factors, because it is the first type 
that represents what would be measured in an experiment. The divergence of this second- 
order perturbation also serves as a reminder that when the magnitude of V, becomes at all 
comparable with A, then the cross terms must be dealt with exactly, not by perturbation 
theory. 
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<A[T T> 
0 . 5  

0.25 0 - 7 ~ ~  0 0.5 1 1.5 2 2.5 3 
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Figure 3. Plots of A, the splitting between lhe lowest T and A states, (AIrclT,), the matrix 
elemenf of M e  stress-like operator bemeen them, and ](Alrr]Tz)12/A against lhe Jaho-Teller 
coupling strength k. 

( 2 )  
c--K (T,T) 

0.05  

0 T 

-0.05 (21 
K (TIT) 
E -0.1 

-0.15 

-0 .2  

-0.25 

0 . 5  I 1.5 2 2 .5  3 

k --> 

Figurr 4. Plots of the seeond-arder Ham facta’s Kf IJ. T), KE’IJ, T) and K F V ,  T) as they 
would be if the neighbouring A state were removed. 

The calculations done so far have not given us KE)(T, T), and inspection of the form 
of ‘& in (26) suggests using the perturbation given by V, = V, = V, = V / A .  The 
effective Hamiltonian that results is 

‘7& = K O h V ( t 8  + tq + t,) + KE)(T, T){V% + K$)(T, T)$V*(tt + tq + t,). (31) 

The eigenvalues of this matrix are 

E, = KE)(T,T)+V2 - [ K O h V  + K $ y r ,  T)SV21 

& = K~)(T,T)~VZ+2[KO~V+K$)(T,T)~V5. (32) 

These energies were fitted to polynomials in V as before, and in fignres 2 and 4 we plot 
the resulting values of this Ham factor with and without the coupling to the A state. 
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Because these second-order Ham factors do not tend to zero at large k ,  we have not 
done a calculation directly comparable to the strong-coupling calculation reported in the 
previous section, but we have verified the asymptotic value of (AltrlTz). We have checked 
the weak-coupling case, as described in the next subsection. 

The results described in t h i s  section are different from those of [Z] in an important way. 
In [Z] none of these second-order Ham factors show the divergence that we find, and this is 
because these authors do not find a non-zero value of (AlqlT,) from their calculations 1.51. 

4.2. Weak coupling 

For these calculations we shall need not only the ground states at weak coupling (lo), but 
also the particular linear combination of uncoupled states to which the first excited A state 
tends as k + 0. This latter state can be identified as 

IA) = $1;  L O ,  0) + 12; 0, 1 ,O)  + 13; O,O, 1)) 

I(AIr~lTz)I = I{AlgP’)I = &k. 

(33) 

by comparison with the multiplication table 1. We can now immediately see from (IO) and 
(33) that 

(34) 

For the perturbation V r q  the ground states (10) couple to excited states as follows: 

11’) --f 13; 1.0.0) + hk12; O,O, 0)  +. . . 
12’) + 13; 0, 1.0) + h k l l ;  O,O, 0) +. . . 

12; 0,1,0) +. . . 
11; 1,0,0)+... . 13‘) + 

(35) 

Applying the perturbation to second order we get the following matrix in the ground states: 

so that under weak coupling, to order kZ 

Kfj)(T, T) = - jk2  @(T, T) = +ik2.  (37) 

Next, we extract the effect of the coupling to the A state, and note that the value of the 
matrix element (A1rrlT,) tends to ,/& at small k,  so this term alone prcduces a mahix of 
second-order pertutbakions of the form 

(8 8 ) V f =  (-$ork2+$&)Vf. 
0 0 -3k’ 

Consequently if the effect of coupling to the A state were removed the remaining second- 
order perturbation matrix would have the form 

(-$UkZ - 1, 9 0  k2 ) r  V 2  (39) 
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so that we should find that 
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(40) K:)(T, T) = -$kz KE (2) (T, T) = - L k 2  18 

and it is worth noticing that even in weak coupling the effect of coupling to the A state 
is sufficient to alter the sign of one of the second-order Ham factors, as it does across the 
range, as can be seen by comparing figures 2 and 4. 

A very similar calculation with the perturbation 

3V.F -I- "n + q )  (41) 

gives us a matrix of second-order perturbations that is 

_ _  'k2V2a - akzV2(y  + r,, + tr) including coupling to A states 3 

- $k2V2a - $k2Vz(y  + rn + q )  with coupling to A states alone 
(42) 

consequently we have 

K$)(T, T) -$k2 including coupling to A states 

Kr (2) (T, T) % &k2 without coupling to A states. 
(43) 

All of these weak coupling limits have been checked against the numerical results that are 
shown in the figures, though some of the very small values are hard to disentangle. 

4.3. Strong coupling 

FOF the strong coupling limits on K(T2) and (A[qlTz) we must start from the electronic 
bases at the four APES minima (16), and note that the expectation values of tr within these 
bases are 

The A and T ground states can be ulitten as 

where each Qt is a vibronic wavefunction conceneated at an i minimum. Applying the 
matrix elements (44) amongst the states (45) then gives the strong coupling results 

K(Tz) = $ (AJz<IT,) = +. (46) 

These considerations are not new, but seem worth spelling out in this context. 
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Figure 5. A plot of the second-order Ham facm K$i’(.:)(E. T) against k. 

5. Effect of E- and Tz-type perturbations together 

Finally, we must look for the extra second-order Ham factor that appears. if both types of 
perturbation act together. The general perturbation must now be written 

(47) 

and the effective Hamiltonian will be the sum of those given in (6) and (26) with the addition 
of 

xrr = K:)(E, T)[V,(-Ve + &V,)r, + v,(-v, - &&)r,, + ~ V ~ V S S ~ J .  

To find this final Ham factor we diagonalize the Hamiltonian 

’ 

‘H,+, = 6 6 0  + VfcE + V,y + V,r, + V C q  

(48) 

%ib + ZJI + V(c8 + r<) (49) 

so that we have 

%eff = K(E)(VEe) +@(E, E)(-v%~) + @(E, E)(v%) 

+ K(T)(Vz<) + Kf)’cr.T)(2Vz6e) + KZ)(T,T)(fV2~) 

+ KZ)(E, T)(2V2q,). (50) 

The eigenvalues of this effective Hamiltonian are 

E , , ~  = $(E)v - K ~ ) ( E , E ) v ~  + z e ~ ) ( ~ , ~ ) v ~ i  

+ [ K f E  E) + 1 ?KA,  (2) (T, T)lV2 f [K(T)V + K$)(E,T)2V2] 
(51) & = -[K(E)V - @)(E, E)Vz + 2Kf)(T, T)V2] 

+ [@(E, E) + iKE) (T ,  T)lVz 

from whiLh this last second-order Ham factor can be extracted without much difficulty. The 
. result is plotted in figure 5. Since there is no contribution from the neighbouging singlet 
state, thii Ham factor tends to zero at large k. 
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5.1. Weak coupling 
The method of doing this calculation has been fully described. In this case we look for 
contributions that are bilinear in VQ and V q  and find a contribution to the matrix of 
-gVZk2zc.  Consequently, to order k2, we have 

M C M O'Brien and D G Shelton 

@(E, T )  = - i k 2  (52) 

which agrees with the results in figure 5. 

6. Discussion 

6.1. Comparison of magnitudes 

In [2], equations (5.5) and (5.6) are directly comparable with some of ours, so we use their 
table 1 to translate them into terms of our operators. The easiest comparison is using their 
case (i) with only Etype operators present. Their (5.5) and (5.6) then become equivalent 
to 

76'' = VEQEE~ 
(53) W) = ;K:)(E, E)(vEQE)% - $ A Z ) ~ ,  E)(VEQE)%O. 

This is to be com ared with the Hamiltonian (8) to show that we should double our 

IT!$@, E) is not too bad. The @)(E, E) differ in that OUIS goes through zero. 

of [2] become 

KE)(E, E) and K E  nP (E, E) to make a proper comparison, in which case the agreement of 

We next try translating case (ii) into our operators, with the result that (5.5) and (5.6) 

x(') = -$vTQT(Y + rq + q) 
'FI" = $K:)(T, T)(vTQT)'~ + K$~)(T,  T)(VTQT)~($ + z,, + q )  (54) 

which is to be compared with the Hamiltonian (31). We find that we must multiply our 
KE)(T, T) by 2718 and our @(T, T) by 112 to make the right comparison with figure 2 
of 121. Here the signs match, but it is not possible to make a sensible comparison of 
magnitudes because of the divergence at large k. 

Finally, we translate case (ui) into ow operators, with the following result for (5.5) and 
(5.6): 

x(') = ~ v E Q E E ~  - ~ v T Q T ~ ~  
(55) 

This is to be compared with the Hamiltonian (50). In this case we have lost some terms, 
but if we simply concentrate on the cross term these equations have in common, we find 
that our KE)(E, T) must be multiplied by -2 for comparison. Here the magnitudes agree 
but the signs differ. 

In practice, minor differences of scale will be relatively unimportant in comparison with 
experiment, as it would be hard to estimate absolute values of the V ,  but differences of sign 
may be important. The existence of the cross terms we find between the A and T states 
will in any case override everything else except in case (i) above, an E-type perturbation, 
and case (i) is where we can make the most unambiguous comparison of results. 

2 

7@ = F K $ ) ( E , T ) V E Q E ~ Q T Z ~ .  



Stress-type perturbations in T@Q Jahn-Teller systems 1139 

6.2. Other comparisons and verification 
Our results clearly differ in various impOaant ways from those obtained in [Z], so we took 
trouble to check them. The calculation of E) was done independently by each of 
us, each using our own computer programme, and we are sure the change of sign takes 
place. The divergence of the @(T, r) we find, and the associated existence of cross terms 
between the A and T states, is a real and important difference. We find thii effect both in 
numerical and analytic calculations, which confirm each other, and believe it to exist. 

7. Concluslon 

We have obtained a set of parametek for the effective Hamiltonian for use in the ground 
triplet when stress is applied to a T @ 72 JahwTeller system, and the effect of the stress 
can be treated as a second-order perturbation. The parameters are defined in terms of a set 
of matrices that are given explicitly in this paper, so that they should be usable without 
any ambiguity about conventions. A number of the results are new, or differ from previous 
work, but probably the most important result in application to experiments is the dominance 
of the coupling between the ground states and the lowest excited state, which happens over 
the whole range of coupling strengths. Only in the case of (100) stress is this coupling 
absent, and the effects of higher levels appear on their own. 
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